Skip to main content

What is a Grounding Transformer?

It is a special three-phase autotransformer for establishing a neutral on a 3-wire delta secondary. Also referred to as a Zig-zag transformer.

  • What is a Grounded Conductor (Grounding)?
  • What is a Bonded Conductor (Bonding)?

      Bonding all metal parts together and then to the system winding (typically to the X0 terminal of a transformer) is done to provide a low-impedance path to the source (system) to facilitate the opening of the circuit-protection device to remove dangerous voltage on metal parts. In addition, bonding the system to metal parts (typically to the X0 terminal of a transformer) stabilizes the system voltage to the metal parts and it provides a zero system reference (to the metal parts).

  • What is a Zig-Zag Connection?
  • Do I need to connect the neutral and ground my HPS three-phase autotransformer?

      If the application needs a neutral (including 3 phase 4 wire systems), the autotransformer must be ordered with the optional neutral terminals (“3L0U” suffix).

      This option will provide the customer with a common (H0/X0) neutral connection point that is connected by the factory to the middle point of the Y winding configuration.

      When selecting this option, both the Line and Load side neutral cables must be connected to the respective neutral terminals in order to ensure the proper operation of the autotransformer.

      HPS does not recommend that the transformer H0/X0 point be grounded locally.

      When an autotransformer without neutral connections is selected, typically the neutral is grounded at the source transformer secondary and is properly referenced throughout the whole installation and carried through to the end load downstream the autotransformer.

      When installing an autotransformer with neutral connections problems can occur when the X0 point of the autotransformer is grounded locally. In such cases a multiple grounding situation may occur which would be against the electrical codes in North America.

      In the above case typically the upstream transformer secondary is grounded at the X0 point of the Y secondary (GND1), in the meantime grounding the X0 point of the autotransformer would create a secondary ground (GND2). Since the two grounds are typically in two different locations, likely far away from each other they will be at different ground potentials.

      This situation can create a number of issues including:

      With the two grounds at different potentials, if the autotransformer center point (X0) is used as a neutral, the line voltages compared to that local neutral would be unbalanced. The extent of the unbalance would depend on the extent of the potential difference between the two grounds (GND1 and GND2). This unbalance could cause issues with the equipment connected to the autotransformer.

      Grounding the X0 of the autotransformer will force the center point of the Y to be always at a certain potential, defined by the local ground. However the voltages of the lines coming into the autotransformer are referenced to the ground point of the upstream transformer. The likely scenario is that the two grounds will be at different potentials which will result in conflicting reference points at the autotransformer. The autotransformer and the electrical system will try to resolve the conflict and equalize the two ground points. The only way that can happen is by having ground current flowing between the two grounds.  Depending on how much of a difference in voltage potential there is between the two grounds and also depending on the ground resistances, there can be a significant current flow through the wye center points.  Adding to this fact that the impedance of an autotransformer is typically low, there could be enough current through the autotransformer to burn out one or more coils of the autotransformer.

      The effects and resulting problems that occur due to improper grounding can be unpredictable and manifest themselves differently in time. Ground potentials can greatly vary depending on environmental conditions.  After installing an autotransformer and grounding the center point of the wye (X0) problems may not surface initially.  However, there is a chance that after a rainstorm or some other event, all of a sudden the user experiences high ground currents just because the grounding conditions have changed.  These problems could be very intermittent in nature and hard to diagnose.

      When an autotransformer with neutral connections is requested, we do not recommend the grounding of the X0 point and recommend that the customer and installing contractor should refer to the local electrical code requirements for grounding and the short circuit protection of a three phase autotransformer.

  • What Output Problems Can Occur with Variable Frequency Drives (VFD or VSD) and How Can You Mitigate These Issues?

      A voltage-sourced Variable Frequency Drive (VFD) uses Insulated-Gate Bipolar Transistors (IGBTs) to rapidly switch voltage on and off to form a Pulse Width Modulated (PWM) voltage source for the motor. The PWM simulates a sine wave voltage source to the motor and it operates as if it was being powered by a sine wave.  The PWM wave allows the VFD to change the fundamental frequency of the PWM waveform and simulate sine waves.  Since the speed of a motor is directly related to the fundamental frequency of the sine wave, a VFD can control speeds from a fraction of a hertz to hundreds of hertz.

      Output reactors, dV/dT filters or drive isolation transformers can be used to help mitigate some issues caused by the PWM output.  PWM outputs cause rapid switching transitions which can cause over-voltages due to parasitic capacitance and inductance in the motor’s leads. The parasitic currents and voltages can be determined by the equation of V = L × (Δi/Δt).  VFD’s switching frequencies (the amount of pulses used to simulate the sine wave) generally range from 1,000-20,000 pulses per second.  IGBT’s produce an almost perfect square wave which produces a very high Δv/Δt.   High Δv/Δt can cause higher surge currents in the leads. This then causes high voltage pulses across the parasitic inductances.  Therefore the faster the pulses switch, the greater the impact of cable capacitance and inductance. These voltage pulses stress the motor’s windings causing higher audible noise, heat and possibly premature failure of the insulation. There is also capacitance in the motor’s bearings.  The combination of lubrication and air gaps prevent direct and continuous contact of the bearings to the metal traces that contain them.  Parasitic currents [I = C × (Δv/Δt)] causes current to flow through the bearings.  The amount of current will increase as the VFD output switching speed increases. These currents can cause micro pits to form in the bearings and eventually will lead to premature bearing failure.

  • What are solar transformers?

      Solar transformers covers a broad selection of transformers which are designed for the unique requirements of a solar power system. These transformers can include solar inverter transformers, grid tie transformers and zig-zag autotransformers or isolation transformers specially designed to be used in grounding banks for utility hook-ups. Transformers used to directly deliver power to utilities must often be capable of bidirectional current flow.

  • Line reactor – definition
  • Neutral grounding reactors – definition
  • dV/dt reactor – definition
  • DC smoothing reactor – definition
  • What is a Unit Substation Style Transformer (USST)?
  • RC filter reactor – definition
  • What is involved with Grounds or Grounding?
  • What is a Grounding Transformer?
  • How do I use a Grounding Transformer?

      Three-phase grounding transformers provide an artificial neutral for grounding. The main requirement is a specific zero-sequence impedance from the Zig-Zag or the Wye/Delta transformer in addition to the fault current withstand rating. For grounding purpose, only the Zig-Zag or a Wye/Delta connected transformer can be used. Autotransformers will have a high zero-sequence impedance and hence, cannot be used for grounding. Air-core reactors can be normally connected between the artificial neutral and ground to provide some additional current-limiting impedance.

      Grounding transformers are often required by the utility to attach a load generator such as solar, wind or a generator to the power grid.

  • What is an Earthing Transformer?