Skip to main content

What is a Type 2 enclosure?

This is a general-purpose enclosure for indoor use primarily to provide a further degree of protection against limited amounts of falling water (drip proof) and dirt.

  • What is a Type 2-S enclosure?
  • What is a Type 12 enclosure?

      This is a non-ventilated indoor enclosure designed primarily for providing a degree of protection against circulating dust, falling dirt, and dripping non-corrosive liquids. This enclosure is both oil and rust resistant suitable for applications such as oil refineries where oil or other chemical liquids may be prevalent. (Note: not watertight)

  • What is a Type 1-N enclosure?

      This is a general-purpose non-ventilated enclosure for indoor use primarily designed to provide a degree of protection against limited amounts of falling dirt. It is ideal for normal factory environments.

  • What is a Type 3R-E enclosure?

      Although similar to the Type 3R enclosure, a Type 3RE also provides added protection against snow and particulate materials. It is more suitable for outdoor installations where snow or other particulate materials are present. In certain conditions, where sustained high wind conditions exist (typically > 75-80 km/hour), external measures to reduce the flow of snow and/or particulate materials may be required. Please consult HPS for assistance with applications where sustained high wind conditions exist.

  • What is a Type 1 enclosure?

      This is a general-purpose ventilated enclosure for indoor use primarily designed to provide a degree of protection against limited amounts of falling dirt. It is ideal for normal factory environments.

  • What is NEMA TP2?

      NEMA TP2 defines how energy efficiency is measured. Typically, it uses a sinusoidal wave with no harmonics at unity (1.0) power factor at 35% load for 600 volt class units and 50% load for medium voltage units.

      This regulation has been replaced by similar test standards described in DOE 2016 and NRCan 2019 regulations.

  • What is NEMA TP3?
  • What is NEMA ST 20?
  • What is a Type 2 enclosure?

      This is a general-purpose enclosure for indoor use primarily to provide a further degree of protection against limited amounts of falling water (drip proof) and dirt.

  • What is a Type 4X enclosure?
  • What is a Type 4 enclosure?

      Type 4 is a non-ventilated indoor or outdoor enclosure designed primarily to provide a degree of protection against windblown dust and rain, splashing water, hose-directed water, and damage from external ice formation.

      It is suitable in areas where exposure to large amounts of water from any direction. (Note: not submersible)

  • What is a Type 3R enclosure?

      Similar to the Type 3, it is also intended for outdoor use. It provides a greater degree of protection against rain, sleet, falling snow or dirt and damage from external ice formation. It is typically used for outdoor installations where no blowing snow or conductive dust exists.

  • What is a Type 3 enclosure?

      This is a general purpose ventilated enclosure for outdoor use designed primarily to provide a degree of protection against rain, sleet, wind blown snow or dust and damage from external ice formation. It is considered ideal for construction sites, subways etc.

  • What are the new Energy Efficiency levels coming for Transformers sold in the U.S.?

      Transformers have been and remain an essential part of our electrical infrastructure.  Everywhere we look there is a transformer supplying power to industrial, commercial or residential applications.

      In the past decades the greenhouse gas emissions and the effects on our planet have become the focus of many governments, agencies and individuals. Energy generation is a major contributor to the greenhouse gas emissions. In addition to widespread efforts to make energy generation more environmentally friendly, there is also a goal to lower energy consumption within most industrial, commercial and residential areas. Achieving increased energy efficiency levels for equipment and consumer products has become a priority for many manufacturers.

      Improving the energy efficiency of new transformers is a primary goal of the US Department of Energy (DOE), and they have the legal authority to define efficiency levels and enforce compliance.  Environmentally conscious consumers also recognize that buying a higher energy efficiency transformer will have a societal payback over many years.

      The Department of Energy has established new and more stringent Energy Efficiency levels for Transformers in the U.S. effective January 1st 2016.  The new efficiency levels for Medium Voltage Liquid-Filled, Medium Voltage and Low Voltage Dry-Type Distribution Transformers are defined in DOE’s CFR (Code of Federal Regulations) title 10 part 431.  Widely known as DOE 10 CFR p431, it was published in the Federal Register Vol. 78, No. 75 on Thursday April 18, 2013.  According to the DOE, the new efficiency levels are expected to reduce energy losses by an average of 18% in low-voltage dry-type distribution transformers and 13% for medium-voltage dry-type transformers, over the current TP-1 efficiency levels.

      To put the benefits of this change in perspective, the DOE projects savings up to $12.9 billion in total costs to consumers and 3.63 quadrillion Btu of energy over a 30 year period. In addition, about 265 million metric tons of carbon dioxide emissions will be avoided, equivalent to the annual greenhouse gas emissions of about 52 million automobiles.

      The subject of energy efficiency for transformers raises two main considerations:

      1. Under normal operation a transformer is always on (typically at 35% average loading), making any energy efficiency improvements more significant over an extended period of time.  This means that customers will be rewarded in two manners:  they are reducing greenhouse gas emissions and there is an economic payback through reduced energy costs.  Considering the life expectancy of a transformer and the fact that the transformer will be on 24 hours a day, 7 days a week for the next 25-30 years, even small energy efficiency improvements will pay dividends for decades.  A secondary benefit is that more efficient transformers generate less heat, and in many cases this translates into lower costs to cool the environment in which they are utilized.
      2. The currently mandated energy efficiency levels are already hovering around the 98-99% mark, depending on the type of transformer and ratings.  This means that any further efficiency improvements become more challenging to achieve, typically requiring more and/or better core and conductor materials.  This will directly impact the cost of the transformer in most cases.  However, as noted in point 1 above, there is an economic benefit to offset the higher initial transformer costs.  The new DOE 2016 compliant transformers that will come on the market will also be somewhat heavier than the current TP-1 efficiency level transformers.

      Hammond Power Solutions (HPS) has an online Energy Savings Calculator to help to our customers determine the savings they can achieve by installing a higher efficiency transformer.  It includes a comparison of transformers with older efficiencies to those of higher efficiency (TP1, NEMA Premium and DOE 2016 in the future) as well as specifics of the application and the customer’s cost of energy.

      Currently, for applications that require higher energy efficiency than the DOE regulated TP-1 levels, industry is using Premium Efficiency transformers defined by the NEMA Premium Efficiency Guidelines that stipulate approximately 30% lower loses than the TP-1 levels.  In terms of the environmental benefits of using a NEMA Premium transformer over a TP-1 rated let’s look at an example:

      The Electricity savings resulting from upgrading one three phase 75 kVA transformer can be translated into one of the following:

      • 1.19 Metric Tons of CO2
      • 121 Gallons of Gasoline
      • About 1/6th of the energy used by an average household annually
      • Planting 28 Trees
      • 0.9 Acres of Forest
      • Recycling 0.34 Metric Tons of Waste
      • Savings of $166 per year at $0.12 per kW-Hr

      Forest image 

      At some kVA ratings NEMA Premium energy efficiency levels meet or slightly exceed the DOE 2016 levels, some are slightly below the new requirements.  However, the NEMA Premium products are optional within the market today, and many consumers do not take advantage of the benefits they afford.  Hence, the DOE will require that all transformers manufactured after January 1st, 2016 will meet the new efficiency levels.

      The environmental impact and savings for our customers resulting from the DOE changes are positive and significant.  HPS fully embraces and supports this change, and the environmental benefits our society will receive as a result.  We proudly offer high quality transformers meeting the most stringent Energy efficiency requirements today and will be in a position to support the migration to the new DOE 2016 higher-efficiency designs for our valued partners and customers, beginning in the latter half of 2015.

  • New Energy Efficiency levels US 2016

      Transformers have been and remain an essential part of our electrical infrastructure.  Everywhere we look there is a transformer supplying power to industrial, commercial or residential applications.

      In the past decades the greenhouse gas emissions and the effects on our planet have become the focus of many governments, agencies and individuals. Energy generation is a major contributor to the greenhouse gas emissions. In addition to widespread efforts to make energy generation more environmentally friendly, there is also a goal to lower energy consumption within most industrial, commercial and residential areas. Achieving increased energy efficiency levels for equipment and consumer products has become a priority for many manufacturers.

      Improving the energy efficiency of new transformers is a primary goal of the US Department of Energy (DOE), and they have the legal authority to define efficiency levels and enforce compliance.  Environmentally conscious consumers also recognize that buying a higher energy efficiency transformer will have a societal payback over many years.

      The Department of Energy has established new and more stringent Energy Efficiency levels for Transformers in the U.S. effective January 1st 2016.  The new efficiency levels for Medium Voltage Liquid-Filled, Medium Voltage and Low Voltage Dry-Type Distribution Transformers are defined in DOE’s CFR (Code of Federal Regulations) title 10 part 431.  Widely known as DOE 10 CFR p431, it was published in the Federal Register Vol. 78, No. 75 on Thursday April 18, 2013.  According to the DOE, the new efficiency levels are expected to reduce energy losses by an average of 18% in low-voltage dry-type distribution transformers and 13% for medium-voltage dry-type transformers, over the current TP-1 efficiency levels.

      To put the benefits of this change in perspective, the DOE projects savings up to $12.9 billion in total costs to consumers and 3.63 quadrillion Btu of energy over a 30 year period. In addition, about 265 million metric tons of carbon dioxide emissions will be avoided, equivalent to the annual greenhouse gas emissions of about 52 million automobiles.

      The subject of energy efficiency for transformers raises two main considerations:

      (1) Under normal operation a transformer is always on (typically at 35% average loading), making any energy efficiency improvements more significant over an extended period of time.  This means that customers will be rewarded in two manners:  they are reducing greenhouse gas emissions and there is an economic payback through reduced energy costs.  Considering the life expectancy of a transformer and the fact that the transformer will be on 24 hours a day, 7 days a week for the next 25-30 years, even small energy efficiency improvements will pay dividends for decades.  A secondary benefit is that more efficient transformers generate less heat, and in many cases this translates into lower costs to cool the environment in which they are utilized.

      (2) The currently mandated energy efficiency levels are already hovering around the 98-99% mark, depending on the type of transformer and ratings.  This means that any further efficiency improvements become more challenging to achieve, typically requiring more and/or better core and conductor materials.  This will directly impact the cost of the transformer in most cases.  However, as noted in point 1 above, there is an economic benefit to offset the higher initial transformer costs.  The new DOE 2016 compliant transformers that will come on the market will also be somewhat heavier than the current TP-1 efficiency level transformers.

      Hammond Power Solutions (HPS) has an online Energy Savings Calculator to help to our customers determine the savings they can achieve by installing a higher efficiency transformer.  It includes a comparison of transformers with older efficiencies to those of higher efficiency (TP1, NEMA Premium and DOE 2016 in the future) as well as specifics of the application and the customer’s cost of energy.

      Currently, for applications that require higher energy efficiency than the DOE regulated TP-1 levels, industry is using Premium Efficiency transformers defined by the NEMA Premium Efficiency Guidelines that stipulate approximately 30% lower loses than the TP-1 levels.  In terms of the environmental benefits of using a NEMA Premium transformer over a TP-1 rated let’s look at an example:

      The Electricity savings resulting from upgrading one three phase 75 kVA transformer can be translated into one of the following:

      • 1.19 Metric Tons of CO2
      • 121 Gallons of Gasoline
      • About 1/6th of the energy used by an average household annually
      • Planting 28 Trees
      • 0.9 Acres of Forest
      • Recycling 0.34 Metric Tons of Waste
      • Savings of $166 per year at $0.12 per kW-Hr

      Dense Forest

       

      At some kVA ratings NEMA Premium energy efficiency levels meet or slightly exceed the DOE 2016 levels, some are slightly below the new requirements.  However, the NEMA Premium products are optional within the market today, and many consumers do not take advantage of the benefits they afford.  Hence, the DOE will require that all transformers manufactured after January 1st, 2016 will meet the new efficiency levels.

      The environmental impact and savings for our customers resulting from the DOE changes are positive and significant.  HPS fully embraces and supports this change, and the environmental benefits our society will receive as a result.  We proudly offer high quality transformers meeting the most stringent Energy efficiency requirements today and will be in a position to support the migration to the new DOE 2016 higher-efficiency designs for our valued partners and customers, beginning in the latter half of 2015.

  • What does the abbreviation NEMA refer to?